Mark schemes

1.

(a)

	Inputs		Output
С	В	Α	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

All Q states correct for 1 mark

(b)

Correct orientation for resistor & switch ✓

Correct tap-off point for X ✓

2

1

(c)
$$Q = \overline{(C.A) + (C.B)}$$
 Two correct brackets \checkmark
$$+ \text{ with full bar } \checkmark$$

$$Allow for 1 mark: Q = \overline{C.(A+B)}$$

2

(d) The gate acts as an inverter \checkmark

Accept 'NOT' as the function

1

(e) Must be a reason and a consequence for the mark. ✓

eg Uses only one type of logic gate so need to hold less stock OR

Uses only one chip rather than two so circuit board can be smaller / less power needed / cheaper

Do not allow: Less complex circuit

- 2.
- (a) +ve knee develops at 0.7 V and does not exceed 1.5 V at 30 mA ✓

–ve knee develops at 5.1 V; 5 mA with near vertical drop. Does not exceed – 5.5 V at –30 mA \checkmark

2

(b) Zener diode provides a reference voltage for non-inverting input ✓

Or

Zener diode provides a stabilised voltage for non-inverting input ✓

**Accept combination of the two statements*

1

(c) $I = V/R = 3.9 \text{ V} / 100 \Omega = 39 \text{ mA}$

This is larger than the minimum current to make Zener diode work so the resistor value is fine. ✓

$$P = I^2 R = (39 \times 10^{-3})^2 \times 100 = 0.152 \text{ watts}$$

This is greater than the power rating for the resistor, so is not a suitable power rating for the resistor ✓

Ecf from value of I

2

(d) The reference voltage at the non-inverting input is now smaller \checkmark

This will cause the output **W** to switch at a lower light intensity than before **I**

2

(e) $Q = (\overline{X + Y}) \cdot W \checkmark$

Accept transformations eg

$$Q = \overline{X} \cdot (\overline{Y + \overline{W}})$$

$$Q = \overline{X} \cdot Y \cdot \overline{W}$$

1

(f) MOSFET has large input impedance

OR

MOSFET causes no loading of the logic gate output. ✓

1

[9]

3.

(a)

Number shown on die	Logic inputs		Logic outputs							
	С	В	Α	L1	L2	L3	L4	L5	L6	L7
1	0	0	0	0	0	0	0	0	0	1
2	0	0	1	1	0	0	0	0	1	0
3	0	1	0	1	0	0	0	0	1	1
4	0	1	1	1	0	1	1	0	1	0
5	1	0	0	1	0	1	1	0	1	1
6	1	0	1	1	1	1	1	1	1	0
Reset 6 → 1										

One mark for each full pattern of **L1** and **L6**:

2

(b) **L7 = NOT A**; Accept: L7 = \overline{A}

1

1 mark for reset condition from B and C 1 mark for use of a single 2-input AND gate (accept correct implementation of the full reset code \overline{A} .B.C for 1 mark)

1 mark - NOT gate from B:

1 mark - AND gate from \overline{B} and C:

1 mark - OR gate connecting the two conditions:

[8]

4.

(a) PRF = 1 / (1.4 RC)

= $1 / (1.4 \times 5.1 \times 10^3 \times 10 \times 10^{-9})$

14 kHz **√**

1

3

(b) Square wave with correct phase and amplitude ✓

(c) New resistor calculated and stated to be 1.7 k Ω \checkmark

New resistor placed in parallel with original resistor ✓

Ecf from part (a)

2

(d)
$$T = \frac{1}{f} = \frac{1}{5 \times 10^3} = 0.2 \text{ ms } (200 \text{ µs})$$

$$t_C = 0.2 \times 10^{-3} \times \frac{3}{4} = 150 \ \mu s$$

$$t_D = 0.2 \times 10^{-3} \times \frac{1}{4} = 50 \ \mu s$$

R₂ =
$$\frac{t_D}{0.7 \times C}$$
 = $\frac{50 \times 10^{-6}}{0.7 \times 10 \times 10^{-9}}$ = 7.1 kΩ (Accept 7kΩ)

$$R_1 = \frac{t_C}{0.7 \times C}$$
 - R2 = 14.3 kΩ (Accept 14kΩ)

1 mark for significant calculation

Eg showing $R_1 = 2R_2$

OR

Calculation for t_C or t_D

1 mark for values of R_1 and R_2

2

- (e) Two properties per mark (max mark 2)√√
 - A square wave
 - Amplitude of 0 V to 5 V
 - Periodic time of 0.2 ms
 - High for 0.15 ms Low for 0.05 ms

[8]

2

5. (a)

Flat line of Q_0 - 1 mark

Correct fall of Q₁ and rise of Q₂ - 1 mark

1

2

Logic OR gate correctly connected in position for 1 mark

(c) The ON time for the green LED is determined by:

the frequency of the clock ✓

the number of adjacent outputs that are OR'ed ✓

Accept reference to the period of the clock pulse.

(d)
$$\mathbf{R} = V_R / I$$
; $\mathbf{R} = (9 - 2.1) V \checkmark / 9 \text{ mA}$

$$R = 6.9 \text{ V} / 9 \text{ mA}$$
; $R = 767 \Omega \checkmark$

Minimum resistor value that can be used in order not to exceed 9 mA is 767 Ω .

The 720 Ω resistor range is (684 to 756) Ω and falls below this value so should not be used. \checkmark

OR

Calculation using 720 Ω ±5% Resistor range = (684 to 756) Ω \checkmark leading to smallest current of 9.1 mA \checkmark

This current will exceed the permitted value of 9 mA. Don't use. ✓

₁One mark for voltage across the resistor

2 One mark for a suitable I-V-R calculation

3One mark for conclusion with reason.

Use of error range to give max resistance must be seen in either $_2$ or $_3$ for that mark to be awarded.

6.

(a) $Q = (\overline{A}.B) + (A.\overline{B}) \checkmark \checkmark$ (allow written format) Do not allow $(A \oplus B)$

- Correct two terms ✓
- Correct operator for OR gate ✓

2

(b)

В	A	O	D	Е	F	Q
0	0	1	1	0	0	0
0	1	0	1	0	1	1
1	0	1	0	1	0	1
1	1	0	0	0	0	0

Correct column C

Correct column E

(c) Any two criteria ✓✓

Less complex circuit – easier to manufacture
Only uses one type of chip – more economical to buy
Uses fewer ICs so saves space
Uses fewer ICs so saves on power consumption

Accept any other valid reason

(d) EOR ✓

Also allow EXOR, XOR

1

2

[7]

7.

(a)

Correct logic gate to MR ✓

Q₃ to logic gate input **✓**

Midpoint of switch chain to logic gate input ✓

OR

Accept 2 diodes in correct position ✓✓ Correct orientation ✓

2 marks only for both resets in correct positions but no logic gate.

1 mark only for any correct single reset circuit.

(b) $(A \cdot C) \checkmark + (B \cdot \overline{C}) \checkmark$

Second mark includes the (+)

Also allow commutative equivalents such

(c)

Decimal number	С	В	Α	D	E	F	W
0	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
2	0	1	0	1	0	1	1
3	0	1	1	1	0	1	1
4	1	0	0	0	0	0	0
5	1	0	1	0	1	0	1
6	1	1	0	0	0	0	0
7	1	1	1	0	1	0	1

(d) numbers 2, 4 and 6 ✓

accept even numbers

1

1

3

(e)

NOT A into the AND gate ✓

(B OR C) into the AND gate ✓

Only 1 mark if AND gate is incorrect

Do not accept use of NAND, NOR, EXOR / EXNOR gates to generate equivalent functions.

2

_

[9]

8.

(a) Difference: BCD counter outputs binary codes. A Johnson decade counter outputs a single output sequentially✓

Similarity: Both counters recycle at the 10th pulse ✓

Both outputs described.

Condone – max counter value for 10th pulse.

Accept: both counters count from 0-9

OR both counters count to 10

(b) Duty cycle:

From oscilloscope
$$t_{on} = 3 \text{ div } @ 50 \text{ µs / div} = 150 \text{ µs}$$
OR
$$t_{on} = 3 \text{ div } @ 50 \text{ µs / div} = 100 \text{ µs / div}$$

$$t_{\rm off}$$
 = 2 div @ 50 μs / div = 100 μs \checkmark

$$\frac{t_{\text{on}}}{(t_{\text{on}} + t_{\text{off}})} \times 100 = 60\% \qquad \text{OR} \quad 0.6 \quad \checkmark$$

(accept 'divisions' to signify the values of t_{on} and t_{off})

Frequency:

From CRO
$$t_p$$
 = 5 div @ 50 μ s / div t_p = 250 μ s

$$f = 1/t_p = 4 \text{ kHz } \checkmark$$

Only 1 mark for:

either of ton or toff correct but duty cycle wrong

OR

correct use of both wrong $t_{\rm on}$ and $t_{\rm off}$

One mark for:

correct use of their t_{on} + t_{off}

BCD: $Q_2 = 600 / 10 = 60 \text{ Hz } \checkmark$ (c)

(only one pulse is produced in 10 clock pulses at Q₂)

Johnson: $Q_2 = 600 / 10 = 60 \text{ Hz } \checkmark$

2

3

[7]